	Analog and Digital Electronics [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - III						
Subject Code		15CS32	IA Marks	20			
Number of Lecture Hours/Week Total Number of Lecture Hours		04 50	Exam Marks Exam Hours	80			
				03	03		
		CREDIT	S – 04	I			
 Re De De Ka De con 	ectives: This course will enab call and Recognize construct monstrate and Analyze Oper scribe, Illustrate and Analyze rnaugh Maps and Quine McC scribe and Design Decod nparators, Latches and Maste scribe, Design and Analyze S	ion and characteris ational Amplifier c c Combinational La Clusky Techniques ers, Encoders, D er-Slave Flip-Flops	ircuits and their application ogic circuits, Simplification vigital multiplexers, A	ations ation of Algebraic Equ Adders and Subtract	uations usin		
	plain and design registers and				Teaching		
viouure -1					Hours		
between JF Wave-Shap Operation Amplifier	ct Transistors: Junction ETs and MOSFETs, Biasi bing Circuits: Integrated al Amplifier: Ideal v/s pra Application Circuits:Peal plifier, Relaxation Oscill nverter.	ng MOSFETs, FI Circuit(IC) M ctical Opamp, Pe c Detector Circui	ET Applications, CM ultivibrators. Introd rformance Parameter t, Comparator, Active	OS Devices. luction to rs, Operational e Filters, Non-	10 Hours		
	1:- Ch 5: 5.2, 5.3, 5.5, 5.8 , 17.15, 17.18, 17.19, 17.2		13.10.Ch 16: 16.3, 10	5.4. Ch 17:			
Module -2							
to HDL. (Karnaugh M Product-of-	Gates: Review of Basic Lo Combinational Logic Cin Map, Pairs Quads, and Oct sums Method, Product-o Method, Hazards and Haza 2:- Ch 2: 2.4, 2.5. Ch3: 3.	rcuits: Sum-of-F ets, Karnaugh Sin f-sums simplifica ard covers, HDL	roducts Method, Tr nplifications, Don't-c ations, Simplification	ruth Table to care Conditions, n by Quine-	10 Hours		

 Data-Processing Circuits: Multiplexers, Demultiplexers, 1-of-16 Decoder, BCD to Decimal Decoders, Seven Segment Decoders, Encoders, Exclusive-OR Gates, Parity Generators and Checkers, Magnitude Comparator, Programmable Array Logic, Programmable Logic Arrays, HDL Implementation of Data Processing Circuits. Arithmetic Building Blocks, Arithmetic Logic Unit Flip- Flops: RS Flip-Flops, Gated Flip-Flops, Edge-triggered RS FLIP-FLOP, Edge-triggered D FLIP-FLOPs, Edge-triggered JK FLIP-FLOPs. Text book 2:- Ch 4:- 4.1 to 4.9, 4.11, 4.12, 4.14.Ch 6:-6.7, 6.10.Ch 8:- 8.1 to 8.5. 	10 Hours
Flip- Flops: FLIP-FLOP Timing, JK Master-slave FLIP-FLOP, Switch Contact Bounce Circuits, Various Representation of FLIP-FLOPs, HDL Implementation of FLIP-FLOP. Registers: Types of Registers, Serial In - Serial Out, Serial In - Parallel out, Parallel In - Serial Out, Parallel In - Parallel Out, Universal Shift Register, Applications of Shift Registers, Register implementation in HDL. Counters: Asynchronous Counters, Decoding Gates, Synchronous Counters, Changing the Counter Modulus. (Text book 2:- Ch 8: 8.6, 8.8, 8.9, 8.10, 8.13. Ch 9: 9.1 to 9.8. Ch 10: 10.1 to 10.4	10 Hours
Module-5	
Counters: Decade Counters, Presettable Counters, Counter Design as a Synthesis problem, A Digital Clock, Counter Design using HDL. D/A Conversion and A/D Conversion: Variable, Resistor Networks, Binary Ladders, D/A Converters, D/A Accuracy and Resolution, A/D Converter-Simultaneous Conversion, A/D Converter-Counter Method, Continuous A/D Conversion, A/D Techniques, Dual-slope A/D Conversion, A/D Accuracy and Resolution.	10 Hours
Text book 2:- Ch 10: 10.5 to 10.9. Ch 12: 12.1 to 12.10.	
Course outcomes:	
 After Studying this course, students will be able to Acquire knowledge of JFETs and MOSFETs , Operational Amplifier circuits and their applications. Combinational Logic, Simplification Techniques using Karnaugh Maps, Q technique. Operation of Decoders, Encoders, Multiplexers, Adders and Subtractors. Working of Latches, Flip-Flops, Designing Registers, Counters, A/D and D/A Conv Analyze the performance of JFETs and MOSFETs , Operational Amplifier circuits 	-
 Simplification Techniques using Karnaugh Maps, Quine McClusky Technique. Synchronous and Asynchronous Sequential Circuits. Apply the knowledge gained in the design of Counters, Registers and A/D & D/A converters. 	5
Graduate Attributes (as per NBA)	
 Engineering Knowledge Design/Development of Solutions(partly) Modern Tool Usage Problem Analysis 	

Question paper pattern:

The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Anil K Maini, Varsha Agarwal: Electronic Devices and Circuits, Wiley, 2012.
- 2. Donald P Leach, Albert Paul Malvino & Goutam Saha: Digital Principles and Applications, 8th Edition, Tata McGraw Hill, 2015

Reference Books:

- 1. Stephen Brown, Zvonko Vranesic: Fundamentals of Digital Logic Design with VHDL, 2nd Edition, Tata McGraw Hill, 2005.
- 2. R D Sudhaker Samuel: Illustrative Approach to Logic Design, Sanguine-Pearson, 2010.
- 3. M Morris Mano: Digital Logic and Computer Design, 10th Edition, Pearson, 2008.