DATA STRUCTURES AND APPLICATIONS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015 -2016) SEMESTER - III				
Subject Code	15CS33	IA Marks	20	
Number of Lecture Hours/Week	04	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS - 04				
Course objectives: This course will ena	able students to			
 Explain fundamentals of dat solving Analyze Linear Data Structure Analyze Non-Linear Data Stru Analyze and Evaluate the sorti Assess appropriate data structure 	a structures and the s: Stack, Queues, List actures: Trees, Graph ing & searching algo are during program d	eir applications essentia sts s rithms evelopment/Problem Sol	ıl for programmi ving	ng/problem
Module -1				Teaching Hours
Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory, Dynamically allocated arrays, Array Operations : Traversing, inserting, deleting, searching, and sorting. Multidimensional Arrays, Polynomials and Sparse Matrices. Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms. Programming Examples. Text 1: Ch 1: 1.2, Ch 2: 2.2 -2.7 Text 2: Ch 1: 1.1 -1.4, Ch 3: 3.1-3.3,3.5,3.7, Ch 4: 4.1-4.9,4.14 Ref 3: Ch 1: 1.4				10 Hours
Module -2				
Stacks and Queues Stacks: Definition, Stack Operatio Dynamic Arrays, Stack Applicatio evaluation of postfix expression, Re of Hanoi, Ackerman's function. Q Operations, Circular Queues, Circula Queues, A Mazing Problem. Multipl Text 1: Ch 3: 3.1 -3.7 Text 2: Ch 6: 6.1 -6.3, 6.5, 6.7-6.10	ons, Array Repressions: Polish notation cursion - Factorial pueues: Definition ar queues using Dy le Stacks and Queu , 6.12, 6.13	entation of Stacks, St n, Infix to postfix co , GCD, Fibonacci Sequ , Array Representatio namic arrays, Dequeuc es. Programming Exan	acks using inversion, ience, Tower n, Queue es, Priority nples.	10 Hours
Module - 3				

Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation; Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion. Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues. Applications of Linked lists – Polynomials, Sparse matrix representation. Programming Examples Text 1: Ch 4: 4.1 -4.8 except 4.6 Text 2: Ch 5: 5.1 – 5.10				
Module-4				
Trees : Terminology, Binary Trees, Properties of Binary trees, Array and linked Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder; Additional Binary tree operations. Threaded binary trees, Binary Search Trees – Definition, Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression, Programming Examples Text 1: Ch 5: 5.1 –5.5, 5.7 Text 2: Ch 7: 7.1 – 7.9				
Module-5				
Graphs : Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs, Elementary Graph operations, Traversal methods: Breadth First Search and Depth First Search. Sorting and Searching : Insertion Sort, Radix sort, Address Calculation Sort. Hashing : Hash Table organizations, Hashing Functions, Static and Dynamic Hashing. Files and Their Organization : Data Hierarchy, File Attributes, Text Files and Binary				
Files, Basic File Operations, File Organizations and Indexing				
1 ext 1: Cn 0: 0.1 –0.2, Cn /: /.2, Cn 8:8.1-8.5 Text 2: Ch 8: 8 1 – 8 7 Ch 9:9 1-9 3 9 7 9 9				
Reference 2: Ch 16: 16.1 - 16.7				
Course outcomes:				
 After studying this course, students will be able to: Acquire knowledge of Various types of data structures, operations and algorithms. Sorting and searching operations. File structures. Analyse the performance of Stack, Queue, Lists, Trees, Graphs, Searching and Sorting techniques. Implement all the applications of Data structures in a high-level language. Design and apply appropriate data structures for solving computing problems. 				
1. Engineering Knowledge 2. Design/Development of Solutions				
2. Design/Development of Solutions 3. Conduct Investigations of Complex Problems				
4. Problem Analysis				

Question paper pattern:

The question paper will have ten questions. There will be 2 questions from each module. Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Fundamentals of Data Structures in C Ellis Horowitz and Sartaj Sahni, 2nd edition, Universities Press,2014
- 2. Data Structures Seymour Lipschutz, Schaum's Outlines, Revised 1st edition, McGraw Hill, 2014

Reference Books:

- Data Structures: A Pseudo-code approach with C –Gil berg & Forouzan, 2nd edition, Cengage Learning, 2014.
- 2. Data Structures using C, , Reema Thareja, 3rd edition Oxford press, 2012.
- 3. An Introduction to Data Structures with Applications- Jean-Paul Tremblay & Paul G. Sorenson, 2nd Edition, McGraw Hill, 2013.
- 4. Data Structures using C A M Tenenbaum, PHI, 1989.
- 5. Data Structures and Program Design in C Robert Kruse, 2nd edition, PHI, 1996.