[As po	E MATHEMAT er Choice Based Credit Sys Effective from the academic	· / ·	2S
``````````````````````````````````````	SEMESTEI	R–III	
Subject Code	15CS36	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS	- 04	

Course objectives: This course will enable students to

- Prepare for a background in abstraction, notation, and critical thinking for the mathematics most directly related to computer science.
- Understand and apply logic, relations, functions, basic set theory, countability and counting arguments, proof techniques,
- Understand and apply mathematical induction, combinatorics, discrete probability, recursion, sequence and recurrence, elementary number theory
- Understand and apply graph theory and mathematical proof techniques.

Module -1	Teaching Hours
<b>Fundamentals of Logic</b> : Basic Connectives and Truth Tables, Logic Equivalence – The Laws of Logic, Logical Implication – Rules of Inference. The Use of Quantifiers, Quantifiers, Definitions and the Proofs of Theorems, <b>Textbook 1: Ch 2</b>	10Hours
Module -2	L
<ul> <li>Properties of the Integers: Mathematical Induction, The Well Ordering Principle – Mathematical Induction, Recursive Definitions. Fundamental Principles of Counting: The Rules of Sum and Product, Permutations, Combinations – The Binomial Theorem, Combinations with Repetition,</li> <li>Textbook 1: Ch 4: 4.1, 4.2 Ch 1.</li> </ul>	10 Hours
Module – 3	
<b>Relations and Functions</b> : Cartesian Products and Relations, Functions – Pla in and One-to- One, Onto Functions. The Pigeon-hole Principle, Function Composition and Inverse Functions. <b>Properties of Relations</b> , Computer Recognition – Zero-One Matrices and Directed Graphs, Partial Orders –Hasse Diagrams, Equivalence Relations and Partitions. <b>Textbook 1: Ch 5:5.1 to 5.3, 5.5, 5.6, Ch 7:7.1 to 7.4</b>	10 Hours
Module-4	

Polynomi	ciple of Inclusion and Exclusion: The Principle of Inclusion and Exclusion, ations of the Principle, Derangements – No thing is in its Right Place, Rook als. Recurrence Relations: First Order Linear Recurrence Relation, The Second ear Homogeneous Recurrence Relation with Constant Coefficients.	10 Hour
Textbook	a 1: Ch 8: 8.1 to 8.4, Ch 10:10.1 to 10.2	
Module-5		
and Grapl	tion to Graph Theory: Definitions and Examples, Sub graphs, Complements, n Isomorphism, Vertex Degree, Euler Trails and Circuits, Trees: Definitions, s, and Examples, Routed Trees, Trees and Sorting, Weighted Trees and Prefix	10 Hours
	a 1: Ch 11: 11.1 to 11.3, Ch 12: 12.1 to 12.4	
Course ou	tcomes:	
1. Ve 2. De co	ving this course, students will be able to: erify the correctness of an argument using propositional and predicate logic and truth tables. emonstrate the ability to solve problems using counting techniques and combinatorics in ntext of discrete probability.	
4. Co an	lve problems involving recurrence relations and generating functions. Instruct proofs using direct proof, proof by contraposition, proof by contradiction, proof by d mathematical induction.	cases,
	plain and differentiate graphs and trees	
1. Er 2. Pr	Attributes (as per NBA) ngineering Knowledge oblem Analysis onduct Investigations of Complex Problems	
Question	paper pattern:	
The questi questions. from each	on paper will have ten There will be 2 questions	
The studer Text Book		2004.
The studer Text Book	s: lph P. Grimaldi: Discrete and Combinatorial Mathematics, , 5 th Edition, Pearson Education.	2004.
The studer Text Book 1. Ra Reference 1. E a	s: Iph P. Grimaldi: Discrete and Combinatorial Mathematics, , 5 th Edition, Pearson Education. <b>Books:</b> Basavaraj S Anami and Venakanna S Madalli: Discrete Mathematics – A Concept pproach, Universities Press, 2016	based
The studer Text Book 1. Ra Reference 1. E a 2. k	s: lph P. Grimaldi: Discrete and Combinatorial Mathematics, , 5 th Edition, Pearson Education. <b>Books:</b> Basavaraj S Anami and Venakanna S Madalli: Discrete Mathematics – A Concept	based