Course Title: S	TRENGTH OF	MATERIALS		
[As per Choice Based Credit System (CBCS) scheme]				
SEMESTER – III				
Subject Code	15CV32	I.A. Ma	rks 20	
Number of Lecture Hours/Week	04	Exam. Ma	rks 80	
Total Number of Lecture Hours	50	Exam. Ho	urs 03	
C	REDITS – 04			
Course objectives: This course will enable students;				
1. To understand the basic concepts of the stresses and strains for different				
materials and strength of struct	ural elements.			
2. To know the development of internal forces and resistance mechanism for one				
dimensional and two dimensional structural elements.				
3. To analyse and understand diffe	erent internal fo	rces and stres	ses induced due	
to representative loads on structural elements.				
4. To analyse and understand principal stresses due to the combination of two				
dimensional stresses on an element and failure mechanisms in materials.				
5. To evaluate the behavior of torsi	onal members,	columns and s		
			Revised	
Modules		Teaching	Bloom's	
		Hours	Taxonomy	
Module -1:			(RBT) Level	
Simple Stresses and Strain:		10 Hours	L2,L3	
Introduction, Definition and conce	ont and of stree		12,13	
	-			
and strain. Hooke's law, Stress-Str ferrous and non-ferrous materials,				
Elongation of tapering bars of				
rectangular cross sections, Elonga				
weight.	luon due lo sei	1-		
Saint Venant's principle, Co	ompound bar	<u></u>		
Temperature stresses, Compound s	-	,		
to temperature stresses, compound s	•			
Elastic constants and their relation	-	1,		
Module -2:	15111p.			
Compound Stresses:		5 Hours	L2,L4	
Introduction, state of stress at a po	oint General tw		22,21	
dimensional stress system, Princi-				
principal planes. Mohr's circle of st	_			
Thin and Thick Cylinders:	100000			
Introduction, Thin cylinders subje	ected to intern	al 5 Hours	L2,L4	
pressure; Hoop stresses, Longitud				
change in volume. Thick cylinde				
both internal and external pr	-			
equation, radial and hoop stress di	•	~		
Module-3:				

Shear Force and Bending Moment in Beams: Introduction to types of beams, supports and loadings. Definition of bending moment and shear force, Sign conventions, relationship between load intensity, bending moment and shear force. Shear force and bending moment diagrams for statically determinate beams subjected to points load, uniformly distributed loads, uniformly varying loads, couple and their combinations. Module -4:	10 Hours	L2,L4
Bending and Shear Stresses in Beams : Introduction, pure bending theory, Assumptions, derivation of bending equation, modulus of rupture, section modulus, flexural rigidity. Expression for transverse shear stress in beams, Bending and shear stress distribution diagrams for circular, rectangular, 'I', and 'T' sections. Shear centre(only concept)	6 Hours	L2.L4
Columns and Struts: Introduction, short and long columns. Euler's theory; Assumptions, Derivation for Euler's Buckling load for different end conditions, Limitations of Euler's theory. Rankine-Gordon's formula for columns.	4 Hours	L2,L4
Torsion in Circular Shaft: Introduction, pure torsion, Assumptions, derivation of torsion equation for circular shafts, torsional rigidity and polar modulus Power transmitted by a shaft, combined bending and torsion. Theories of Failure:	7 Hours	L2,L4
Introduction, maximum principal stress theory (Rankine's theory), Maximum shearing stress theory (Tresca's theory), Strain energy theory (Beltrami and Haigh), and maximum strain theory (St. Venant's theory).	3 Hours	L1,L2

Course outcomes:

After studying this course, students will be able;

- 1. To evaluate the strength of various structural elements internal forces such as compression, tension, shear, bending and torsion.
- 2. To suggest suitable material from among the available in the field of construction and manufacturing.
- 3. To evaluate the behavior and strength of structural elements under the action of compound stresses and thus understand failure concepts.
- 4. To understand the basic concept of analysis and design of members subjected to torsion.
- 5. To understand the basic concept of analysis and design of structural elements such as columns and struts.

Program Objectives (as per NBA)

- Engineering Knowledge.
- Problem Analysis.
- o Interpretation of data.

Question paper pattern:

- The question paper will have Ten questions, each full question carrying 16 marks.
- There will be two full questions (with a maximum three sub divisions, if necessary) from each module.
- Each full question shall cover the topics under a module.
- The students shall answer Five full questions selecting one full question from each module.
- If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.

Text Books:

- 1. B.S. Basavarajaiah, P.Mahadevappa "Strength of Materials" in SI Units, University Press (India) Pvt. Ltd., 3rd Edition, 2010
- 2. Ferdinand P. Beer, E. Russell Johnston and Jr.John T. DeWolf "Mechanics of Materials", Tata McGraw-Hill, Third Edition, SI Units

Reference Books:

- 1. D.H. Young, S.P. Timoshenko " Elements of Strength of Materials" East West Press Pvt. Ltd., 5th Edition (Reprint 2014)
- 2. R K Bansal, "A Textbook of Strength of Materials", 4th Edition, Laxmi Publications, 2010
- 3. S.S. Rattan " Strength of Materials" McGraw Hill Education (India) Pvt. Ltd., 2nd Edition (Sixth reprint 2013)
- 4. Vazirani, V N, Ratwani M M. and S K Duggal "Analysis of Structures Vol. I", 17th Edition, Khanna Publishers, New Delhi.