Course Title: FLUIDS MECHA	ANICS				
[As per Choice Based Credit System (CBCS) scheme] SEMESTER – III					
Subject Code 15CV33	IA M	arks	20		
Number of Lecture Hours/Week 04	Exam M	arks	80		
Total Number of Lecture Hours 50	Exam H	ours	03		
CREDITS – 04					
Course objectives:					
The objectives of this course is to make student	s to learn:				
 The Fundamental properties of fluids and its applications. Hydrostatic laws and application to practical problem solving Principles of Kinematics and Hydro-Dynamics for practical applications Basic design of pipes and pipe networks considering flow, pressure and its losses. The basic flow rate measurements 					
Modules	Teaching Hours (RBT) Level		ised om's onomy T) el		
Module -1					
Fluids & Their Properties: Concept of fluid, Systems of units. Properties of fluid; Mass density, Specific weight, Specific gravity, Specific volume, Viscosity, Cohesion, Adhesion, Surface tension& Capillarity. Fluid as a continuum, Newton's law of viscosity (theory & problems).Capillary rise in a vertical tube and between two plane surfaces (theory & problems). vapor pressure of liquid, compressibility and bulk modulus, capillarity, surface tension, pressure inside a water droplet, pressure inside a soap bubble and liquid jet. Numerical problems	5 Hours	L2,1	L 3		
Fluid Pressure and Its Measurements:	5 Hours	L2,1	L3		
Definition of pressure, Pressure at a point, Pascal's law, Variation of pressure with depth. Types of pressure. Measurement of pressure using simple, differential & inclined manometers (theory & problems). Introduction to Mechanical and					

Module -2		
Hydrostatic forces on Surfaces : Definition, Total pressure, centre of pressure, total pressure on horizontal, vertical and inclined plane surface, total pressure on curved surfaces, water pressure on gravity dams, Lock gates. Numerical Problems.	3 Hours	L2,L4
Fundamentals of fluid flow (Kinematics):		
Introduction. Methods of describing fluid motion. Velocity and Total acceleration of a fluid particle. Types of fluid flow, Description of flow pattern. Basic principles of fluid flow, three-dimensional continuity equation in Cartesian coordinate system. Derivation for Rotational and irroational motion. Potential function, stream function, orthogonality of streamlines and equipotential lines. Numerical problems on Stream function and velocity potential. Introduction to flow net.	7 Hours	L2,L4
Module -3		
Fluid Dynamics: Introduction. Forces acting on fluid in motion. Euler's equation of motion along a streamline and Bernoulli's equation. Assumptions and limitations of Bernoulli's equation. Modified Bernoulli's equation. Problems on applications of Bernoulli's equation (with and without losses). Vortex motion; forced vortex, free vortex, problems Momentum equation problems on pipe bends. Applications:	10 Hours	L2,L4
Introduction. Venturimeter, Orificemeter, Pitot tube. Numerical Problems		
Orifice and Mouthpiece: Introduction, classification, flow through orifice, hydraulic coefficients, Numerical problems. Mouthpiece, classification, Borda's Mouthpiece (No problems). Notches and Weirs:	3 Hours	L1,L2
Introduction. Classification, discharge over rectangular, triangular, trapezoidal notches, Cippoletti notch, broad crested weirs. Numerical problems. Ventilation of weirs, submerged weirs.	7 Hours	L2,L4

Module -5				
Flow through Pipes:	7 Hours	L2,L4		
Introduction. Major and minor losses in pipe flow. Darcy-Weisbach equation for head loss due to friction in a pipe. Pipes in series, pipes in parallel, equivalent pipe-problems. Minor losses in pipe flow, equation for head loss due to sudden expansion. Numerical problems. Hydraulic gradient line, energy gradient line. Pipe Networks, Hardy Cross method, Numerical problems.				
Surge Analysis in Pipes:	3 Hours	L2,L4		
Water hammer in pipes, equations for pressure rise due to gradual valve closure and sudden closure for rigid and elastic pipes. Problems				
Course outcomes:				
 Possess a sound <i>knowledge</i> of fundamental properties of fluids and fluid continuum <i>Compute</i> and solve problems on hydrostatics, including practical applications <i>Apply</i> principles of mathematics to represent kinematic concepts related to fluid flow <i>Apply</i> fundamental laws of fluid mechanics and the Bernoulli's principle for practical applications <i>Compute</i> the discharge through pipes and over notches and weirs Program Objectives (as per NBA) 				
 Engineering Knowledge. Drohlem Anglusia 				
• Interpretation of data				
 Interpretation of data. Question paper pattern: 				
• The question paper will have Ten questions, each	ch full quest	ion carrying		
There will be two full questions (with a maximum	m Three sub	divisions if		
• mere will be two full questions (with a maximul necessary) from each module	III THEE SUD			
 Each full question shall cover the topics under a 	module.			
• The students shall answer Five full questions se	electing one f	ull question		
from each module.				
 If more than one question is answered in modu considered for the award of marks limiting one each module. 	iles, best an full question	swer will be n answer in		

Text	Books:
1.	P N Modi and S M Seth, "Hydraulics and Fluid Mechanics, including
	Hydraulic Machines", 20th edition, 2015, Standard Book House, New
	Delhi
2.	R.K. Bansal, "A Text book of Fluid Mechanics and Hydraulic
	Machines", Laxmi Publications, New Delhi
3.	S K SOM and G Biswas, "Introduction to Fluid Mechanics and Fluid
	Machines", Tata McGraw Hill,New Delhi
Refer	ence Books:
1.	Victor L Streeter, Benjamin Wylie E and Keith W Bedford, "Fluid
	Mechanics", Tata McGraw Hill Publishing Co Ltd., New Delhi,
	2008(Ed)
2.	K Subramanya, "Fluid Mechanics and Hydraulic Machines", Tata
	McGraw Hill Publishing Co. Ltd.
3.	K Subramanya, "Fluid Mechanics and Hydraulic Machines-problems
	and solutions", Tata McGraw Hill Publishing Co. Ltd.
4.	J. F. Douglas, J. M. Gasoriek, John Swaffield, Lynne Jack,
	"Fluid Mechanics", Pearson, Fifth Edition
5.	Mohd.Kaleem Khan, "Fluid Mechanics and Machinery", Oxford
	University Press