Course Title: Analysis of Determinate Structures

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER – IV

Subject Code	15CV42	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03

CREDITS – 04

Course objectives: This course will enable students to

- 1. Apply knowledge of mathematics and engineering in calculating slope and deflections
- 2. Identify, formulate and solve engineering problems
- 3. Analyse structural systems and interpret data
- 4. Engage in lifelong learning with the advances in Structural Engineering

4. Engage in lifelong learning with the advances in Structural Eng	gineering	
Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1		
Introduction and Analysis of Plane Trusses Structural forms, Conditions of equilibrium, Compatibility conditions, Degree of freedom, Linear and non linear analysis, Static and kinematic indeterminacies of structural systems, Types of trusses, Assumptions in analysis, Analysis of determinate trusses by method of joints and method of sections. Module -2	10 Hours	L2,L4,L5
 Deflection of Beams Definition of slope, Deflection and curvature, Sign conventions, Derivation of moment-curvature equation. Double integration method and Macaulay's method: Slope and deflection for standard loading cases and for determinate prismatic beams subjected to point loads, UDL, UVL and couple. Moment area method: Derivation, Mohr's theorems, Sign conventions, Application of moment area method for determinate prismatic beams, Beams of varying section, Use of moment diagram by parts. Conjugate beam method: Real beam and conjugate beam, conjugate beams of variable cross sections. 	10 Hours	L2,L4,L5
Module -3		
Energy Principles and Energy Theorems	10 Hours	L2,L4,L5
Principle of virtual displacements, Principle of virtual forces, Strain energy and complimentary energy, Strain energy due to axial force, bending, shear and torsion, Deflection of determinate beams and trusses using total strain energy, Deflection at the point of application of single load, Castigliano's theorems and its application to estimate the deflections of trusses, bent frames, Special applications-Dummy unit load method.		

Module -4					
Arches and Cable Structures	10 Hours	L2, L4, L5			
Three hinged parabolic arches with supports at the same and					
different levels. Determination of normal thrust, radial shear and					
bending moment.					
Analysis of cables under point loads and UDL. Length of cables					
for supports at same and at different levels- Stiffening trusses for					
suspension cables.					
Module -5					
Influence Lines and Moving Loads	10 Hours	L2, L4, L6			
Concepts of influence lines-ILD for reactions, SF and BM for					
determinate beams-ILD for axial forces in determinate trusses-					
Reactions, BM and SF in determinate beams using rolling loads					
concepts.					
Course outcomes: After studying this course, students will be able	to:				
1. Evaluate the forces in determinate trusses by method of joints and sections.					
2. Evaluate the deflection of cantilever, simply supported and overhanging beams by different methods					
3. Understand the energy principles and energy theorems and its applications to determine the					
deflections of trusses and bent frames.					
 Determine the stress resultants in arches and cables. 					
5. Understand the concept of influence lines and construct the	II D diagram f	for the moving			
loads.					
Program Objectives (as per NBA)					
o Engineering Knowledge.					
 Problem Analysis. 					
• Interpretation of Data.					
Question paper pattern:					
• The question paper will have ten questions, each full question carrying 16 marks.					
• There will be two full questions (with a maximum Three sub di	visions, if neces	ssary) from			
each module.					
• Each full question shall cover the topics under a module.					
• The students shall answer five full questions selecting one full question from each module.					
• If more than one question is answered in modules, best answer will be considered for the					
award of marks limiting one full question answer in each module.					
Text Books:					
1. Reddy C S, Basic Structural Analysis, Tata McGraw Hill, New Delhi.					
2. Muthu K U. etal, Basic Structural Analysis, 2 nd edition, IK International Pvt. Ltd., New					
Delhi,2015.					
3. Bhavikatti, Structual Analysis, Vikas Publishing House Pvt. Ltd, New Delhi, 2002.					
Reference Books:					
1. Hibbeler R C, Structural Analysis, Prentice Hall, 9 th edition, 2014					
2. Devadoss Menon, Structural Analysis, Narosa Publishing House, New Delhi, 2008.					
3. Prakash Rao D S, Structural Analysis, University Press Pvt. Ltd, 2007.					