Course Title: Applied Hydraulics						
[As per Choice Based Credit System (CBCS) scheme]						
SEMESTER – IV						
Subject Code	15CV43	IA Marks	20			
Number of Lecture Hours/Week	04	Exam Marks	80			
Total Number of	50	Exam Hours	03			
Lecture Hours						
CDEDITS 04						

CREDITS – 04

Course Objectives: The objectives of this course is to make students to learn:

- 1. Principles of dimensional analysis to design hydraulic models and Design of various models.
- 2. Design the open channels of various cross sections including design of economical sections.
- 3. Energy concepts of fluid in open channel, Energy dissipation, Water surface profiles at different conditions.
- 4. The working principles of the hydraulic machines for the given data and analyzing the performance of Turbines for various design data.

ModulesHoursTaxonomy (RBT) LevelModule 1: Dimensional and Model analysis10Dimensional analysis03L1, L2, L3Dimensional analysis and similitude: Dimensional homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham π theorem, dimensional analysis, choice of variables, examples on various applications.03L1, L2, L3Model analysis:Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics10L3,L4Uniform Flow connical channel sections, Uniform flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.04L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Module 1: Ourigen flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steen critical 0304L2,L3		Teaching	Revised Bloom's
Module 1: Dimensional and Model analysis10Dimensional analysis10Dimensional analysis03L1, L2, L3Dimensional analysis and similitude: Dimensional homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham π theorem, dimensional analysis, choice of variables, examples on various applications.04L1, L2, L3Model analysis:Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3,L4Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics1010Uniform Flow channels, Numerical Problems.04L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems04L2, L3Modull 3: Numerical Problems04L2, L3Cradually varied flow, Equation, Back water curve and afflux, Description of ond re curves or profiles Mild steen, critical 0304	Modules	Hours	Taxonomy
Module 1: Dimensional and Model analysis10Dimensional analysis03L1, L2, L3Dimensional analysis and similitude: Dimensional homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham π theorem, dimensional analysis, choice of variables, examples on various applications.04L1, L2, L3Model analysis:Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.04L1, L2, L3,L4Buoyancy and Flotation Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems10L3,L4Introduction, Classification of flow through open channel, Most economical channel sections, Uniform flow through open channel, Most corresponding critical parameters, Metering flumes, Numerical problems04L2,L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems10L2,L3,L4Module 3: Non-Uniform Flow corresponding critical problems03L2,L3,L4			(RBT) Level
Dimensional analysis03L1, L2, L3Dimensional analysis and similitude: Dimensional homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham π theorem, dimensional analysis, choice of variables, examples on various applications.04L1, L2, L3Model analysis: model, model, analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.04L1, L2, L3Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems10L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2, L3, L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steen critical of analysis04L2, L3	Module 1: Dimensional and Model analysis	10	
Dimensional analysis and similitude: Dimensional homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham π theorem, dimensional analysis, choice of variables, examples on various applications.04L1, L2, L3Model analysis:Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Foude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems10L3,L4Introduction, Classification of flow through open channels, Numerical Problems.04L2, L3Specific Energy and Specific energy curve, Critical flow and problems04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems10L2,L3,L4Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Descrition of water curves or profiles Mild steep critical Descrition of on the curve and afflux, Descrition of water curves or profiles Mild steep critical Descrition of mater curves or profiles Mild steep critical Descrition of water curves or profiles Mild steep critic	Dimensional analysis	03	L1, L2, L3
homogeneity, Non Dimensional parameter, Rayleigh methods and Buckingham π theorem, dimensional analysis, choice of variables, examples on various applications.04L1, L2, L3Model analysis: Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3,L4Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics10L3,L4Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.04L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems03L2,L3,L4Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems10L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Descrition of water curves or profiles Mild steep critical profiles Mild steep critical O3L2,L3	Dimensional analysis and similitude: Dimensional		
and Buckingham π theorem, dimensional analysis, choice of variables, examples on various applications.III, L2, L3Model analysis: Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics10L3,L4Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems10L2,L3,L4Module 3: Non-Uniform Flow Loss, Numerical Problems03L2,L3,L4Module 1: Jump, Expressions for conjugate depths and Energy loss, Numerical Problems04L2,L3Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical Description of water curves or profiles Mild steep critical Description of water curves or profiles Mild steep critical04L2,L3	homogeneity, Non Dimensional parameter, Rayleigh methods		
variables, examples on various applications.04L1, L2, L3Model analysis: Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics Introduction, Classification of flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06L3,L4Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Module 1: Ump, Expressions for conjugate depths and Energy loss, Numerical Problems04L2,L3	and Buckingham π theorem, dimensional analysis, choice of		
Model analysis: Model analysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3,L4Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics Introduction, Classification of flow through open channel, Most economical channel sections, Uniform flow through open channel, Most corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems1012Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems04L2,L3	variables, examples on various applications.		
Modelanalysis:Modelanalysis, similitude, types of similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3, L4Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics10L3,L4Uniform Flow Introduction, Classification of flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.04L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems00L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Module 1: Dup, Expressions for conjugate depths and Energy loss, Numerical Problems04L2,L3			
similarities, force ratios, similarity laws, model classification, Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3,L4Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics10L3,L4Uniform Flow Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.04L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems03L2,L3,L4Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems10L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical O304L2,L3	Model analysis: Model analysis, similitude, types of	04	L1, L2, L3
Reynolds model, Froude's model, Euler's Model, Webber's model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3,L4Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics10L3,L4Uniform Flow channels, Classification of flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow loss, Numerical Problems10L2,L3,L4Module 1: Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical Description of water curves or profiles Mild steep critical D304L2,L3	similarities, force ratios, similarity laws, model classification,		
model, Mach model, scale effects, Distorted models. Numerical problems on Reynold's, and Froude's Model.03L1, L2, L3,L4Buoyancy and Flotation Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems03L1, L2, L3,L4Module 2: Open Channel Flow Hydraulics10L3,L4Uniform Flow conomical channel sections, Uniform flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems10L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems04L2, L3.Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles. Mild steep. critical04L2, L3.	Reynolds model, Froude's model, Euler's Model, Webber's		
Numerical problems on Reynold s, and Froude's Model.03L1, L2, L3,L4Buoyancy and Flotation03L1, L2, L3,L4Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems10Module 2: Open Channel Flow Hydraulics10Uniform Flow Introduction, Classification of flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical ProblemsL2, L3Module 3: Non-Uniform Flow loss, Numerical Problems10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical 0304	model, Mach model, scale effects, Distorted models.		
Buoyancy and Flotation03L1, L2, L3,L4Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems10Module 2: Open Channel Flow Hydraulics10Uniform Flow Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow loss, Numerical Problems1010Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical04L2,L3	Numerical problems on Reynold's, and Froude's Model.	0.2	
Buoyancy, Force and Centre of Buoyancy, Metacentre and Metacentric height, Stability of submerged and floating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problems10Module 2: Open Channel Flow Hydraulics10Uniform Flow Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4	Buoyancy and Flotation	03	L1, L2, L3,L4
Metacentric height, Stability of submerged and hoating bodies, Determination of Metacentric height, Experimental and theoretical method, Numerical problemsImage: Comparison of Metacentric height, Experimental and theoretical method, Numerical problemsModule 2: Open Channel Flow Hydraulics10Uniform Flow Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow1010Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep, critical 0304L2,L3	Buoyancy, Force and Centre of Buoyancy, Metacentre and		
Determination of Metacentric height, Experimental and theoretical method, Numerical problems10Module 2: Open Channel Flow Hydraulics10Uniform Flow Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical O304L2,L3	Netacentric neight, Stability of submerged and floating bodies,		
Module 2: Open Channel Flow Hydraulics10Uniform FlowL3,L4Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow1010Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles. Mild_steep_critical04L2,L3	Determination of Metacentric neight, Experimental and		
Module 2: Open Channel Flow Hydraulics10Uniform FlowL3,L4Introduction, Classification of flow through open channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow1010Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles. Mild steep, critical03L2,L3	Modulo 2: Onen Channel Eleve Hudrowlieg	10	
Uniform FlowL.3,L4Introduction, Classification of flow through open channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles. Mild_steep_critical04	Module 2: Open Channel Flow Hydraulics	10	
Introduction, Classification of flow through channels, Chezy's and Manning's equation for flow through open channel, Most economical channel sections, Uniform flow through Open channels, Numerical Problems.06Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild_steep_critical_0304L2,L3	Uniform Flow		L3,L4
and Maining's equation for flow through open channel, Most00economical channel sections, Uniform flow through Open channels, Numerical Problems.04Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical04	Introduction, Classification of flow through channels, Chezy's	06	
economical channel sections, officinit now through Open channels, Numerical Problems.04L2, L3Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow1010Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical O303L2,L3	and Maining's equation for now unough open channel, most	00	
Chamfers, Numerical Problems.04Specific Energy and Specific energy curve, Critical flow and corresponding critical parameters, Metering flumes, Numerical Problems04Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical O304	channels Numerical Problems		
Specific Energy and Specific energy curve, Critical now and corresponding critical parameters, Metering flumes, Numerical Problems04L2, L3Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical O304L2,L3	Specific Energy and Specific energy curve Critical flow and	04	1213
Concesponding critical parameters, Metering numes, NumericalProblems10Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical 0304L2,L3	corresponding critical parameters. Metering flumes, Numerical	04	L2, L3
Module 3: Non-Uniform Flow10Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical 0304L2,L3	Problems		
Hydraulic Jump, Expressions for conjugate depths and Energy loss, Numerical Problems03L2,L3,L4Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical 0304L2,L3	Module 3: Non-Uniform Flow	10	
Instruction of water curves or profiles Mild steep critical 03 12,13,14 Iteration 1000000000000000000000000000000000000	Hydraulic Jump Expressions for conjugate depths and Energy	10	121314
Gradually varied flow, Equation, Back water curve and afflux, Description of water curves or profiles Mild steep critical 03	loss. Numerical Problems	0.5	,,,
Description of water curves or profiles Mild steep, critical 03	Gradually varied flow. Equation. Back water curve and afflux.	04	L2.L3
	Description of water curves or profiles, Mild, steep, critical,	03	

horizontal and advarsa slope profiles. Numerical problems		
Control acetions		
Control sections		
Module 4: Hydraulic Machines		
Introduction, Impulse-Momentum equation. Direct impact of a	05	L2,L3
jet on a stationary and moving curved vanes, Introduction to		
concept of velocity triangles, impact of jet on a series of curved		
vanes- Problems		
Turbines – Impulse Turbines		
Introduction to turbines, General lay out of a hydro-electric	05	L1, L2, L3,L4
plant, Heads and Efficiencies, classification of turbines. Pelton		
wheel-components, working principle and velocity triangles.		
Maximum power, efficiency, working proportions – Numerical		
problems		
Module 5: Reaction Turbines and Pumps		
Radial flow reaction turbines: (i) Francis turbine- Descriptions,	06	L1,L2, L3,L4
working proportions and design, Numerical problems. (ii)		
Kaplan turbine- Descriptions, working proportions and design,		
Numerical problems. Draft tube theory and unit quantities. (No		
problems)		
Centrifugal pumps: Components and Working of centrifugal		
pumps, Types of centrifugal pumps, Work done by the impeller,		
Heads and Efficiencies, Minimum starting speed of centrifugal		
pump, Numerical problems, Multi-stage pumps.		

COURSE OUTCOMES:

After a successful completion of the course, the student will be able to:

- 1. Apply dimensional analysis to develop mathematical modeling and compute the parametric values in prototype by analyzing the corresponding model parameters
- 2. Design the open channels of various cross sections including economical channel sections
- 3. Apply Energy concepts to flow in open channel sections, Calculate Energy dissipation, Compute water surface profiles at different conditions
- 4. Design turbines for the given data, and to know their operation characteristics under different operating conditions

Program Objectives

- 1. PO1: Engineering Knowledge
- 2. PO2: Problem analysis
- 3. PO3: Analyse and development of Solutions

Question Paper Pattern:

- Total number of Questions to be set is 10. Two full questions are to be set from each module.
- Not more than 3 sub questions are to be set under any main question
- Questions are to be set such that the entire module is covered and further, should be answerable for the set marks.
- Each question should be set for 16 marks
- Students should answer 5 full questions selecting at least 1 from each module.

Text Books:

- 1. P N Modi and S M Seth, "Hydraulics and Fluid Mechanics, including Hydraulic Machines", 20th edition, 2015, Standard Book House, New Delhi
- 2. R.K. Bansal, "A Text book of Fluid Mechanics and Hydraulic Machines", Laxmi Publications, New Delhi
- 3. S K SOM and G Biswas, "Introduction to Fluid Mechanics and Fluid Machines", Tata McGraw Hill,New Delhi

Reference Books:

- 1. K Subramanya, "Fluid Mechanics and Hydraulic Machines", Tata McGraw Hill Publishing Co. Ltd.
- 2. Mohd. Kaleem Khan, "Fluid Mechanics and Machinery", Oxford University Press
- 3. C.S.P. Ojha, R. Berndtsson, and P.N. Chandramouli, *"Fluid Mechanics and Machinery"*, Oxford University Publication 2010
- 4. J.B. Evett, and C. Liu, "Fluid Mechanics and Hydraulics", McGraw-Hill Book Company.-2009.