Reference Books:

- 1. IS 1905–1987 "Code of practice for structural use of un-reinforced masonry- (3rd revision) BIS, New Delhi.
- 2. SP 20 (S&T) 1991, "Hand book on masonry design and construction (1st revision) BIS, New Delhi.

Course Title: Theory of Elasticity

Professional Elective-1

[As per Choice Based Credit System (CBCS) scheme]

SEMESTER:V

Exam Hours	03
Exam Marks	80
IA Marks	20
	IA Marks Exam Marks

Course Objectives: This course will enable students to

- 1. This course advances students from the one-dimensional and linear problems conventionally treated in courses of strength of materials into more general, two and three-dimensional problems.
- 2. The student will be introduced to rectangular and polar coordinate systems to describe stress and strain of a continuous body.
- 3. Introduction to the stress strain relationship, basic principles and mathematical expressions involved in continuum mechanics. also solution of problems in 2- dimensional linear elasticity

Modules	Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1		
Concepts of continuum, Stress at a point, Components of stress, Differential equations of equilibrium, Stress transformation, Principal stresses, Maximum shear stress, Stress invariants. Strain at a point, Infinitesimal strain, Strain-displacement relations, Components of strain, Compatibility Equations, Strain transformation, Principal strains, Strain invariants, Measurement of surface strains, strain rosettes	08 hours	L1, L2, L3
Module -2		
Generalized Hooke's Law, Stress-strain relationships, Equilibrium equations in terms of displacements and Compatibility equations in terms of stresses, Plane stress and plane strain problems, St. Venant's principle, Principle of superposition, Uniqueness theorem, Airy's stress function, Stress polynomials (Two Dimensional cases only).	08 Hours	L1, L2, L3
Module -3		
Two-dimensional problems in rectangular coordinates, bending of a cantilever beam subjected to concentrated load at free end, effect of shear deformation in beams, Simply supported beam subjected to Uniformly distributed load.	08 Hours	L3, L4
Two-dimensional problems in polar coordinates, strain-displacement relations,		

equ	ations of equilibrium, compatibility equation, stress function.					
Mo	odule -4					
Ax	isymmetric stress distribution - Rotating discs, Lame's equation for thick					
cyl ten	inder, Effect of circular hole on stress distribution in plates subjected to sion compression and shear stress concentration factor	08 Hours	L3, L4			
ten	sion, compression and shear, sitess concentration factor.					
Mo	Module -5					
То	rsion: Inverse and Semi-inverse methods, stress function, torsion of circular,	00.11				
elli	ptical, triangular sections	08 Hours	L3, L4			
Co	urse outcomes: On the completion of this course students are expected to attain	the following out	comes;			
1.	Ability to apply knowledge of mechanics and mathematics to model elastic boo	dies as continuum				
2.	Ability to formulate boundary value problems; and calculate stresses and strain	18				
3.	Ability to comprehend constitutive relations for elastic solids and compatibility	constraints;				
4.	Ability to solve two-dimensional problems (plane stress and plane strain) using	g the concept of str	ess function.			
Pr	ogram Objectives:					
•	Engineering knowledge					
•	Problem analysis					
•	Interpretation of data					
Question Paper Pattern:						
• The question paper will have 5 modules comprising of ten questions. Each full question carrying 16 marks						
•	• There will be two full questions (with a maximum of three subdivisions, if necessary) from each module.					
•	• Each full question shall cover the topics as a module					
• The students shall answer five full questions, selecting one full question from each module. If more than one question is answered in modules, best answer will be considered for the award of marks limiting one full question answer in each module.						
Text Books:						
1.	S P Timoshenko and J N Goodier, "Theory of Elasticity", McGraw-Hill International Edition, 1970.					
2.	. Sadhu Singh, "Theory of Elasticity", Khanna Publishers, 2012					
3.	S Valliappan, "Continuum Mechanics - Fundamentals", Oxford & IBH Pub. Co. Ltd., 1981.					
4.	4. L S Srinath, "Advanced Mechanics of Solids", Tata - McGraw-Hill Pub., New Delhi, 2003					
Reference Books:						
1.	C. T. Wang, "Applied Elasticity", Mc-Graw Hill Book Company, New York, 1953					
2.	G. W. Housner and T. Vreeland, Jr., "The Analysis of Stress and Deformation", California Institute of Tech., CA, 2012. [Download as per user policy from <u>http://resolver.caltech.edu/CaltechBOOK:1965.001]</u>					
3.	A. C. Ugural and Saul K. Fenster, "Advanced Strength and Applied Elasticity", Prentice Hall, 2003.					
4.	Abdel-Rahman Ragab and Salah Eldinin Bayoumi, "Engineering Soli	id Mechanics: F	undamentals and			