	e Based Credit Syste SEMESTER:V			
Subject Code	15CV663	IA M	larks	20
Number of Lecture Hours/Week	03	Exan	n Marks	80
Total Number of Lecture Hours	40		n Hours	03
CREDITS -03	10		Marks- 100	00
Course objectives: This course aims at provi procedures for solving numerically different k		pasic concepts o	f a few numerica	ogy
Modules			Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1				1
Solution of Equations and Eigen value Prote transcendental equations, Fixed point iteration method, Solution of linear system of equations Pivoting, Gauss Jordan method – Iterative meth Seidel - Matrix Inversion by Gauss Jordan method	method, Newton Ra s, Gauss elimination hods of Gauss Jacob	phson method,	8 hours	L1,L2,L3
Module -2				
Interpolation and Approximation: Interpola Lagrange's interpolation – Newton's divided d Splines - Interpolation with equal intervals - N difference formulae.	lifference interpolation	on – Cubic	8 Hours	L1,L2,L3
Module -3				
Numerical Differentiation and Integration: interpolation polynomials - Numerical integrat 1/3 rule – Romberg's method - Two point and formulae – Evaluation of double integrals by T rules.	tion using Trapezoid three point Gaussian	al, Simpson's quadrature	8 Hours	L1,L2,L3
Module -4				
Initial Value Problems for Ordinary Different methods - Taylor's series method - Euler's methods - Taylor's series method for solving methods - Milne's and Adams-Bash forth predefirst order equations.	thod - Modified Eul first order equations	er's method – - Multi step	8 Hours	L1,L2,L3
Module -5			1	- [
Boundary Value Problems in Ordinary and Finite difference methods for solving two-poin Finite difference techniques for the solution of Poisson's equations on rectangular domain – O by explicit and implicit (Crank Nicholson) me equation by explicit method.	nt linear boundary va f two dimensional La Dne dimensional hea thods – One dimensional	lue problems - place's and t flow equation onal wave	8 Hours	L1,L2,L3
Course Outcomes: After studying this course techniques, ideas and would be able to demonse Industry, management and other engineering for Program Objectives:	strate the application			
 Engineering knowledge Problem analysis Interpretation of data 				
 Question Paper Pattern: The question paper will have 5 modules c There will be two full questions (with a m Each full question shall cover the topics a The students shall answer five full question is answered in modules, best ansa answer in each module 	aximum of three sub s a module stions, selecting one	divisions, if nec full question fr	essary) from each	n module.

Text Books:

- Grewal. B.S., and Grewal. J.S., "Numerical methods in Engineering and Science", Khanna 1. Publishers, 9th Edition, New Delhi
- Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6th Edition, New 2. Delhi

Reference Books:

- Chapra. S.C., and Canale.R.P., "Numerical Methods for Engineers, Tata McGraw Hill, New Delhi 1.
- 2. Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia, New Delhi Sankara Rao. K., "Numerical methods for Scientists and Engineers", Prentice Hall of India Private, New Delhi 2.
- 3.