	ourse Title: Finite Eleme hoice Based Credit Syster SEMESTER:VI	n (CBCS) sche	me]	
Subject Code	15CV664	IA N	larks	20
Number of Lecture Hours/Week	03		n Marks	80
Total Number of Lecture Hours	40	Exar	Exam Hours	
CREDITS - Course objectives: This course will enabl 1. Develop analytical skills. 2. Learn principles of analysis of stress a 3. Develop problem solving skills. 4. Understand the principles of FEM for	e students to; and strain.		<u>l Marks- 100</u>	
Modules			Teaching Hours	Revised Bloom's Taxonomy (RBT) Level
Module -1				
Theory of elasticity concepts, Energy principles, Rayleigh - Ritz Method, Galerkin method and finite element method, steps in finite element analysis, displacement approach, stiffness matrix and boundary conditions			8 hours	L1,L2
Module -2				
Discritisation; finite representation of infinite bodies and discritisation of very large bodies, Natural Coordinates, Shape functions; polynomial, LaGrange and Serendipity, one dimensional formulations; beam and truss with numerical examples			8 Hours	L1,L2
Module -3			1	
2D formulations; Constant Strain Triangle, Linear Strain Triangle, 4 and 8 noded quadrilateral elements, Numerical Evaluation of Element Stiffness -Computation of Stresses, Static Condensation of nodes, degradation technique, Axisymmetric Element			8 Hours	L1,L2,L3
Module -4				
Isoparametric concepts; isoparametric, sub elements, Jacobian transformation matrix, Elements, Numerical integration by Gauss three dimensional problems	Stiffness Matrix of Isopar	rametric	8 Hours	L1,L2,L3
Module -5				
Techniques to solve nonlinearities in structural systems; material, geometric and combined non linearity, incremental and iterative techniques. Structure of computer program for FEM analysis, description of different modules, exposure to FEM softwares.			8 Hours	L1,L2,L3
Course outcomes: The student will have t	he knowledge on advance	ed methods of a	analysis of structu	ires
 Program Objectives: Engineering knowledge Problem analysis Interpretation of data 				
 Question paper pattern: The question paper will have 5 n There will be two full questions (Each full question shall cover the The students shall answer five fur question is answered in module: question answer in each module. 	with a maximum of three topics as a module Il questions, selecting on	subdivisions, i e full question	f necessary) from from each modul	each module. le. If more than o

Text Books:

- 1. Krishnamoorthy C.S., "Finite Element analysis" -Tata McGraw Hill
- 2. Desai C & Abel J F.," Introduction to Finite element Method", East West Press Pvt. Ltd.,
- 3. Cook R D et.al., "Concepts and applications of Finite Element analysis", John Wiley

Reference Books:

- Daryl L Logan, "A first course on Finite element Method ", Cengage Learning
 Bathe K J "Finite Element Procedures in Engineering analysis "- Prentice Hall