ENGINEERING MATHEMATICS-I [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2015-2016) SEMESTER - I/II			
Subject Code	15MAT11	IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS - 04			
Course Objectives: To enable the students to apply the knowledge of Mathematics in various engineering fields by making them to learn the following: - $\mathrm{n}^{\text {th }}$ derivatives of product of two functions and polar curves. - Partial derivatives - Vector calculus - Reduction formulae of integration; To solve First order differential equations. - Solution of system of linear equations, quadratic forms.			
Differential Calculus -1: determination of $\mathrm{n}^{\text {th }}$ order derivatives of Standard functions - Problems. Leibnitz's theorem (without proof) - problems. Polar Curves - angle between the radius vector and tangent, angle between two curves, Pedal equation of polar curves. Derivative of arc length - Cartesian, Parametric and Polar forms (without proof) - problems. Curvature and Radius of Curvature - Cartesian, Parametric, Polar and Pedal forms (without proof) -problems			
Module -2			

| Differential Calculus -2
 Taylor's and Maclaurin's theorems for function of one
 variable(statement only)- problems. Evaluation of Indeterminate
 forms. | |
| :--- | :--- | :--- |
| Partial derivatives - Definition and simple problems, Euler's | |
| theorem(without proof) - problems, total derivatives, partial | |
| differentiation of composite functions-problems. Definition and | |
| evaluation of Jacobians | |

Linear Algebra

Hours - 10
Rank of a matrix by elementary transformations, solution of system of linear equations - Gauss-elimination method, Gauss -Jordan method and Gauss-Seidel method

Eigen values and Eigen vectors, Rayleigh's power method to find the largest Eigen value and the corresponding Eigen vector. Linear transformation, diagonalisation of a square matrix . Reduction of Quadratic form to Canonical form

Course outcomes:

On completion of this course, students are able to

- Use partial derivatives to calculate rates of change of multivariate functions.
- Analyze position, velocity, and acceleration in two or three dimensions using the calculus of vector valued functions.
- Recognize and solve first-order ordinary differential equations, Newton's law of cooling
- Use matrices techniques for solving systems of linear equations in the different areas of Linear Algebra.

Question paper pattern:

- The question paper will have ten questions.
- Each full Question consisting of 16 marks
- There will be 2 full questions(with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.
- The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. B.S. Grewal, "Higher Engineering Mathematics", Khanna publishers, $42^{\text {nd }}$ edition, 2013.

2. Erwin Kreyszig, "Advanced Engineering MathematicsI, Wiley, 2013
Reference Books:
1. B.V. Ramana, "Higher Engineering M athematics", Tata Mc Graw-Hill,
2006
2. N.P.Bali and Manish Goyal, "A text book of Engineering mathematics",
Laxmi publications, latest edition.
3. H.K. Dass and Er. RajnishVerma, "Higher Engineerig Mathematics",
S.Chand publishing, $1^{\text {st }}$ edition, 2011 .

