DATADA	CE MANIACEN	TENIT CY/OTEN					
		IENT SYSTEM tem (CBCS) scheme]					
- -	•	year 2016 -2017)					
(Effective 110	SEMESTER	•					
Subject Code	15CS53	IA Marks	20				
Number of Lecture Hours/Week	4						
		Exam Marks	80				
Total Number of Lecture Hours	50	Exam Hours	03				
	CREDITS -						
Course objectives: This course wil							
Provide a strong foundatio				.			
Practice SQL programming		•	s.				
Demonstrate the use of cor							
Design and build database	applications for	real world problems.	Т	T			
Module – 1				Teachin			
				Hours			
Introduction to Databases: Introdu				10 Hour			
Advantages of using the DBMS							
Overview of Database Languages and Architectures: Data Models, Schemas,							
and Instances. Three schema arch		•					
languages, and interfaces, The Database System environment. Conceptual Data							
Modelling using Entities and R	-						
attributes, roles, and structural co	•	entity types, ER diag	rams,				
examples, Specialization and Gener							
Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.	6, 3.1 to 3.10						
Module – 2							
Relational Model: Relational Mod				10 Hour			
and relational database schemas, Update operations, transactions, and dealing							
with constraint violations. Relational Algebra: Unary and Binary relational							
operations, additional relational ope	,		-				
of Queries in relational algebra. Ma							
Design: Relational Database Desi	~ ~	11 0	_				
SQL data definition and data types, specifying constraints in SQL, retrieval							
queries in SQL, INSERT, DELET	ΓE, and UPDA	TE statements in SQL	٠,				
Additional features of SQL.							
Textbook 1: Ch4.1 to 4.5, 5.1 to 5.	3, 6.1 to 6.5, 8.1	; Textbook 2: 3.5					
Module – 3							
SQL: Advances Queries: More co	omplex SQL retr	ieval queries, Specifyin	g	10 Hour			
constraints as assertions and action	on triggers, View	ws in SQL, Schema o	hange				
statements in SQL. Database Appli	ication Develop	ment: Accessing databa	ases				
from applications, An introduction t	to JDBC, JDBC	classes and interfaces, S	SQLJ,				
Stored procedures, Case study: The internet Bookshop. Internet Applications:							
The three-Tier application architecture, The presentation layer, The Middle Tier							
Textbook 1: Ch7.1 to 7.4; Textbook	-	•					
Module – 4							
			· T	10 Hour			
	Theory – Introdi	action to Normalization	using	TA Hom			
Normalization: Database Design	•		_	10 Hour			
Normalization: Database Design Tunctional and Multivalued Dependent	ndencies: Inform	nal design guidelines	for	10 Houi			
Normalization: Database Design	ndencies: Information indencies, Normation	nal design guidelines al Forms based on Pr	for imary	IV HOUI			

Form. **Normalization Algorithms:** Inference Rules, Equivalence, and Minimal Cover, Properties of Relational Decompositions, Algorithms for Relational Database Schema Design, Nulls, Dangling tuples, and alternate Relational Designs, Further discussion of Multivalued dependencies and 4NF, Other dependencies and Normal Forms

Textbook 1: Ch14.1 to 14.7, 15.1 to 15.6

Module – 5

Transaction Processing: Introduction to Transaction Processing, Transaction 10 Hours and System concepts, Desirable properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques for Concurrency control, Concurrency

control based on Timestamp ordering, Multiversion Concurrency control techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity Locking. Introduction to Database Recovery Protocols: Recovery Concepts, NO-UNDO/REDO recovery based on Deferred update, Recovery techniques based on immediate update, Shadow paging, Database backup and recovery from catastrophic failures

Textbook 1: 20.1 to 20.6, 21.1 to 21.7, 22.1 to 22.4, 22.7.

Course outcomes: The students should be able to:

- Identify, analyze and define database objects, enforce integrity constraints on a database using RDBMS.
- Use Structured Query Language (SQL) for database manipulation.
- Design and build simple database systems
- Develop application to interact with databases.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Fundamentals of Database Systems, RamezElmasri and Shamkant B. Navathe, 7th Edition, 2017, Pearson.
- 2. Database management systems, Ramakrishnan, and Gehrke, 3rd Edition, 2014, McGraw Hill

Reference Books:

- 1. Silberschatz Korth and Sudharshan, Database System Concepts, 6th Edition, Mc-GrawHill, 2013.
- 2. Coronel, Morris, and Rob, Database Principles Fundamentals of Design, Implementation and Management, Cengage Learning 2012.