AUTOMATA THEORY AND COMPUTABILITY				
[As per Choice Based Credit System (CBCS) scheme]				
(Effective from the academic year 2016 -2017)				
Subject Code	<u>SEMIESTEK – v</u> 15CS54	IA Marks	20	
Number of Lecture Hours/Week	4	Exam Marks	80	
Total Number of Lecture Hours	50	Exam Hours	03	
CREDITS – 04				
Course objectives: This course will enable students to				
Introduce core concepts in Automata and Theory of Computation				
• Identify different Formal language Classes and their Relationships				
 Design Grammars and Recognizers for different formal languages 				
 Prove or disprove theorems in automata theory using their properties 				
• Determine the decidability and intractability of Computational problems				
Module – 1	2	1 1	Teaching	
			Hours	
Why study the Theory of Computa	tion, Languages a	nd Strings: Strings,	10 Hours	
Languages. A Language Hierarchy, Computation, Finite State Machines				
(FSM): Deterministic FSM, Regular languages, Designing FSM,				
Nondeterministic FSMs, From FSM	s to Operational S	Systems, Simulators	for	
FSMs, Minimizing FSMs, Canonical f	form of Regular lan	guages, Finite State		
Transducers, Bidirectional Transducers.				
Textbook 1: Ch 1,2, 3,4, 5.1 to 5.10				
$\frac{\text{Module} - 2}{2}$				
Regular Expressions (RE): what is a RE?, Rieene's theorem, Applications of REs. Manipulating and Simplifying REs. Regular Grammars: Definition			10 Hours	
Regular Grammars and Regular languages Regular Languages (RL) and Non-				
regular Languages: How many RLs. To show that a language is regular. Closure				
properties of RLs to show some languages are not RLs				
Textbook 1: Ch 6, 7, 8: 6.1 to 6.4, 7.1, 7.2, 8.1 to 8.4				
Module – 3	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Context-Free Grammars(CFG): Introd	uction to Rewrite S	Systems and Gramma	rs. 10 Hours	
CFGs and languages, designing CF	Gs. simplifying C	FGs. proving that a	10 110 110	
Grammar is correct, Derivation and	Parse trees, Amb	iguity, Normal Form	ns.	
Pushdown Automata (PDA): Definition of non-deterministic PDA, Deterministic			stic	
and Non-deterministic PDAs, Non-determinism and Halting, alternative				
equivalent definitions of a PDA, alternatives that are not equivalent to PDA.				
Textbook 1: Ch 11, 12: 11.1 to 11.8,	12.1, 12.2, 12,4, 12	2.5, 12.6		
Module – 4				
Context-Free and Non-Context-Free	Languages: When	e do the Context-Fr	ee 10 Hours	
Languages(CFL) fit, Showing a langu	age is context-free,	Pumping theorem for	r .	
CFL, Important closure properties of CFLs, Deterministic CFLs. Algorithms and			nd	
Decision Procedures for CFLs: Dec	idable questions,	Un-decidable questio	ns.	
I uring Machine: I uring machine mod	lel, Representation,	Language acceptabili	ity	
Dy INI, design of INI, lechniques for Taythook 1, Ch 12, 12 1 to 12 5 Ch	1 IVI construction.	rthaalr 7. Ch 0 1 4- 0	6	
1 CALDOOK 1; UH 13; 13.1 to 13.3, UH 14; 14.1, 14.2, 1 CALDOOK 2; UH 9.1 to 9.0 Madula 5				
Variante of Turing Machines (TM) Th	ha modal of Linear	Poundad automata	10 Uouwa	
Decidability: Definition of an algor	ithm decidability	decidable langua		
Decidationary. Deminition of an algor	and accidating,	ucciuable langua	15 ⁰⁰ ,	

Undecidable languages, halting problem of TM, Post correspondence problem.			
Complexity: Growth rate of functions, the classes of P and NP, Quantum			
Computation: quantum computers, Church-Turing thesis.			
Textbook 2: Ch 9.7 to 9.8, 10.1 to 10.7, 12.1, 12.2, 12.8, 12.8.1, 12.8.2			
Course outcomes: The students should be able to:			
• Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation			
• Learn how to translate between different models of Computation (e.g., Deterministic and Non-deterministic and Software models).			
• Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.			
• Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.			
Classify a problem with respect to different models of Computation.			
Question paper pattern:			
The question paper will have TEN questions.			
There will be TWO questions from each module.			
Each question will have questions covering all the topics under a module.			
The students will have to answer FIVE full questions, selecting ONE full question from each module.			
Text Books:			
1. Elaine Rich, Automata, Computability and Complexity, 1 st Edition, Pearson			
Education,2012/2013			
2. K L P Mishra, N Chandrasekaran, 3 rd Edition, Theory of Computer Science, PhI, 2012.			
Reference Books:			
1. John E Hopcroft, Rajeev Motwani, Jeffery D Ullman, Introduction to AutomataTheory,			
Languages, and Computation, 3rd Edition, Pearson Education, 2013			
2. Michael Sipser : Introduction to the Theory of Computation, 3rd edition,			
Cengage learning,2013			
John C Martin, Introduction to Languages and The Theory of Computation, 3 rd Edition, Tata McGraw –Hill Publishing Company Limited, 2013			
A Deter Linz "An Introduction to Formal Languages on d Automate" 3rd Edition			

- 4. Peter Linz, "An Introduction to Formal Languages and Automata", 3rd Edition, Narosa Publishers, 1998
- 5. Basavaraj S. Anami, Karibasappa K G, Formal Languages and Automata theory, Wiley India, 2012
- 6. C K Nagpal, Formal Languages and Automata Theory, Oxford University press, 2012.