OBJECT ORIENTED MODELING AND DESIGN [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER - V

Subject Code	15CS551	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
CDEDUC 02				

CREDITS – 03

Course objectives: This course will enable students to

- Describe the concepts involved in Object-Oriented modelling and their benefits.
- Demonstrate concept of use-case model, sequence model and state chart model for a given problem.
- Explain the facets of the unified process approach to design and build a Software system.
- Translate the requirements into implementation for Object Oriented design.
- Choose an appropriate design pattern to facilitate development procedure.

Module – 1	Teaching
	Hours
Introduction, Modelling Concepts and Class Modelling: What is Object orientation? What is OO development? OO Themes; Evidence for usefulness of OO development; OO modelling history. Modelling as Design technique: Modelling; abstraction; The Three models. Class Modelling: Object and Class Concept; Link and associations concepts; Generalization and Inheritance; A sample class model; Navigation of class models; Advanced Class Modelling, Advanced object and class concepts; Association ends; N-ary associations; Aggregation; Abstract classes; Multiple inheritance; Metadata; Reification; Constraints; Derived Data; Packages. Text Book-1: Ch 1, 2, 3 and 4	8 Hours
Module – 2	
UseCase Modelling and Detailed Requirements: Overview; Detailed object-	8 Hours
oriented Requirements definitions; System Processes-A use case/Scenario view;	
Identifying Input and outputs-The System sequence diagram; Identifying Object	
Behaviour-The state chart Diagram; Integrated Object-oriented Models.	
Text Book-2:Chapter- 6:Page 210 to 250	
Module – 3	0.77
Process Overview, System Conception and Domain Analysis: Process Overview: Development stages; Development life Cycle; System Conception: Devising a system concept; elaborating a concept; preparing a problem statement. Domain Analysis: Overview of analysis; Domain Class model: Domain state model; Domain interaction model; Iterating the analysis.	8 Hours
Text Book-1:Chapter- 10,11,and 12	
Module – 4	0.77
Use case Realization: The Design Discipline within up iterations: Object Oriented Design-The Bridge between Requirements and Implementation; Design Classes and Design within Class Diagrams; Interaction Diagrams-Realizing Use Case and defining methods; Designing with Communication Diagrams; Updating the Design Class Diagram; Package Diagrams-Structuring the Major Components; Implementation Issues for Three-Layer Design. Text Book-2: Chapter 8: page 292 to 346	8 Hours

Module – 5		
Design Patterns: Introduction; what is a design pattern?, Describing des	sign	8 Hours
patterns, the catalog of design patterns, Organizing the catalog, How des	sign	
patterns solve design problems, how to select a design patterns, how to use a		
design pattern; Creational patterns: prototype and singleton(only);structura	ıl	
patterns adaptor and proxy(only).		
Text Book-3: Chanter-1: 1.1, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8. Chanter-3. Chanter-4	4	

Course outcomes: The students should be able to:

- Describe the concepts of object-oriented and basic class modelling.
- Draw class diagrams, sequence diagrams and interaction diagrams to solve problems.
- Choose and apply a befitting design pattern for the given problem.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML,2nd Edition, Pearson Education,2005
- 2. Satzinger, Jackson and Burd: Object-Oriented Analysis & Design with the Unified Process, Cengage Learning, 2005.
- 3. Erich Gamma, Richard Helm, Ralph Johnson and john Vlissides: Design Patterns Elements of Reusable Object-Oriented Software, Pearson Education, 2007.

Reference Books:

- 1. Grady Booch et.al.: Object-Oriented Analysis and Design with Applications,3rd Edition,Pearson Education,2007.
- 2. 2.Frank Buschmann, RegineMeunier, Hans Rohnert, Peter Sommerlad, Michel Stal: Pattern –Oriented Software Architecture. A system of Patterns, Volume 1, John Wiley and Sons.2007.
- 3. 3. Booch, Jacobson, Rambaugh: Object-Oriented Analysis and Design with Applications, 3rd edition, pearson, Reprint 2013

SOCIAL NETWORK ANALYSIS

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER - V

Subject Code	15IS552	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS – 03

Course objectives: This course will enable students to

• Discuss essential knowledge of network analysis applicable to real world data, with examples from today's most popular social networks.

with examples from today's most popular social networks.	
Module 1	Teaching Hours
Introduction to good network analysis and Descriptive network analysis	8 Hours
Introduction to social network analysis and Descriptive network analysis:	8 Hours
Introduction to new science of networks. Networks examples. Graph theory	
basics. Statistical network properties. Degree distribution, clustering coefficient.	
Frequent patterns. Network motifs. Cliques and k-cores.	
Module 2	
Network structure, Node centralities and ranking on network: Nodes and edges, network diameter and average path length. Node centrality metrics: degree, closeness and betweenness centrality. Eigenvector centrality and PageRank. Algorithm HITS.	8 Hours
Module 3	
Network communities and Affiliation networks: Networks communities.	8 Hours
Graph partitioning and cut metrics. Edge betweenness. Modularity clustering.	
Affiliation network and bipartite graphs. 1-mode projections. Recommendation	
systems.	
Module 4	
Information and influence propagation on networks and Network	8 Hours
visualization: Social Diffusion. Basic cascade model. Influence maximization.	
Most influential nodes in network. Network visualization and graph layouts.	
Graph sampling. Low -dimensional projections	
Module 5	
Social media mining and SNA in real world: FB/VK and Twitter analysis: 8 Natural language processing and sentiment mining. Properties of large social	Hours

networks: friends, connections, likes, re-tweets.

Course Outcomes: The students should be able to:

- Define notation and terminology used in network science.
- Demonstrate, summarize and compare networks.
- Explain basic principles behind network analysis algorithms.
- Analyzing real world network.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. David Easley and John Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World." Cambridge University Press 2010.

- 2. Eric Kolaczyk, Gabor Csardi. "Statistical Analysis of Network Data with R (Use R!)". Springer, 2014.
- 3. Stanley Wasserman and Katherine Faust. "Social Network Analysis. Methods and Applications." Cambridge University Press, 1994.

Reference Books:

1. **NIL**

ADVANCED JAVA AND J2EE

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER - V

Subject Code	15CS553	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS – 03

Course objectives: This course will enable students to

- Identify the need for advanced Java concepts like Enumerations and Collections
- Construct client-server applications using Java socket API
- Make use of JDBC to access database through Java Programs
- Adapt servlets to build server side programs

Module - 4

• Demonstrate the use of JavaBeans to develop component-based Java software

Module – 1	Teaching
	Hours
Enumerations, Autoboxing and Annotations (metadata): Enumerations,	8 Hours
Enumeration fundamentals, the values() and valueOf() Methods, java enumerations are class types, enumerations Inherits Enum, example, type	
wrappers, Autoboxing, Autoboxing and Methods, Autoboxing/Unboxing occurs	
in Expressions, Autoboxing/Unboxing, Boolean and character values,	
Autoboxing/Unboxing helps prevent errors, A word of Warning. Annotations,	
Annotation basics, specifying retention policy, Obtaining Annotations at run	
time by use of reflection, Annotated element Interface, Using Default values,	
Marker Annotations, Single Member annotations, Built-In annotations.	
Module – 2	
The collections and Framework: Collections Overview, Recent Changes to	8 Hours
Collections, The Collection Interfaces, The Collection Classes, Accessing a	Ollowis
collection Via an Iterator, Storing User Defined Classes in Collections, The	
Random Access Interface, Working With Maps, Comparators, The Collection	
Algorithms, Why Generic Collections?, The legacy Classes and Interfaces,	
Parting Thoughts on Collections.	
Module – 3	
String Handling: The String Constructors, String Length, Special String	8 Hours
Operations, String Literals, String Concatenation, String Concatenation with	
Other Data Types, String Conversion and toString() Character Extraction,	
charAt(), getChars(), getBytes() toCharArray(), String Comparison, equals()	
and equalsIgnoreCase(), regionMatches() startsWith() and endsWith(), equals(
) Versus == , compareTo() Searching Strings, Modifying a String, substring(),	
concat(), replace(), trim(), Data Conversion Using valueOf(), Changing the	
Case of Characters Within a String, Additional String Methods, StringBuffer,	
StringBuffer Constructors, length() and capacity(), ensureCapacity(),	
setLength(), charAt() and setCharAt(), getChars(),append(), insert(), reverse(
), delete() and deleteCharAt(), replace(), substring(), Additional StringBuffer	
Methods, StringBuilder	
Text Book 1: Ch 15	

Background; The Life Cycle of a Servlet; Using Tomcat for Servlet Development; A simple Servlet; The Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The Javax.servlet.http package; Handling HTTP Requests and Responses; Using Cookies; Session Tracking. Java Server Pages (JSP): JSP, JSP Tags, Tomcat, Request String, User Sessions, Cookies, Session Objects

Text Book 1: Ch 31 Text Book 2: Ch 11

Module – 5

The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief Overview of the JDBC process; Database Connection; Associating the JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Transaction Processing; Metadata, Data types; Exceptions.

8 Hours

Text Book 2: Ch 06

Course outcomes: The students should be able to:

- Interpret the need for advanced Java concepts like enumerations and collections in developing modular and efficient programs
- Build client-server applications and TCP/IP socket programs
- Illustrate database access and details for managing information using the JDBC API
- Describe how servlets fit into Java-based web application architecture
- Develop reusable software components using Java Beans

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

- 1. Herbert Schildt: JAVA the Complete Reference, 7th/9th Edition, Tata McGraw Hill, 2007.
- 2. Jim Keogh: J2EE-TheCompleteReference, McGraw Hill, 2007.

Reference Books:

- 1. Y. Daniel Liang: Introduction to JAVA Programming, 7thEdition, Pearson Education, 2007.
- 2. Stephanie Bodoff et al: The J2EE Tutorial, 2nd Edition, Pearson Education, 2004.
- 3. Uttam K Roy, Advanced JAVA programming, Oxford University press, 2015.

PROGRAMMING LANGAUGES [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - V Subject Code 15IS554 IA Marks 20 Number of Lecture Hours/Week 3 Exam Marks 80 Total Number of Lecture Hours 40 Exam Hours 03 CREDITS - 03 Course objectives: This course will enable students to • Acquaint with discipline of programming • Familiarize with semantics of different constructs of languages • Introduce different programming paradigms • Illustrate use of different languages and their applications Module – 1 Teaching Hours Overview, Names, Types, Type systems 8 Hours Module – 2 Semantics, semantic interpretation 8 Hours Module - 3Functions, function implementation, memory management 8 Hours Module – 4 Imperative programming, object oriented programming, functional programming 8 Hours Module – 5 Logic programming, event-driven programming, concurrent programming 8 Hours

Course outcomes: The students should be able to:

- Select appropriate languages for given applications
- Demonstrate usage and justification of different languages
- Compare and contrast the strengths and weaknesses of different languages

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Programming languages by Allen B. Tucker and Robert E. Noonan

Reference Books:

NIL