PROGRAMMING IN JAVA [As (Effective from the acad	-	•	,
Subject Code	15CS561	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80

CREDITS – 03

Course objectives: This course will enable students to

Total Number of Lecture Hours

Text book 1: Ch 9, Ch 10

• Learn fundamental features of object oriented language and JAVA

40

- Set up Java JDK environment to create, debug and run simple Java programs.
- Learn object oriented concepts using programming examples.
- Study the concepts of importing of packages and exception handling mechanism.

Exam Hours

03

• Discuss the String Handling examples with Object Oriented concepts.

• Discuss the String Handling examples with Object Oriented concepts.	
Module – 1	Teaching
	Hours
An Overview of Java: Object-Oriented Programming, A First Simple Program, A	8 Hours
Second Short Program, Two Control Statements, Using Blocks of Code, Lexical	
Issues, The Java Class Libraries, Data Types, Variables, and Arrays: Java Is a	
Strongly Typed Language, The Primitive Types, Integers, Floating-Point Types,	
Characters, Booleans, A Closer Look at Literals, Variables, Type Conversion and	
Casting, Automatic Type Promotion in Expressions, Arrays, A Few Words	
About Strings	
Text book 1: Ch 2, Ch 3	
Module – 2	
Operators: Arithmetic Operators, The Bitwise Operators, Relational Operators,	8 Hours
Boolean Logical Operators, The Assignment Operator, The ? Operator, Operator	
Precedence, Using Parentheses, Control Statements: Java's Selection Statements,	
Iteration Statements, Jump Statements.	
Text book 1: Ch 4, Ch 5	
Module – 3	ı
Introducing Classes: Class Fundamentals, Declaring Objects, Assigning Object	8 Hours
Reference Variables, Introducing Methods, Constructors, The this Keyword,	
Garbage Collection, The finalize() Method, A Stack Class, A Closer Look at	
Methods and Classes: Overloading Methods, Using Objects as Parameters, A	
Closer Look at Argument Passing, Returning Objects, Recursion, Introducing	
Access Control, Understanding static, Introducing final, Arrays Revisited,	
Inheritance: Inheritance, Using super, Creating a Multilevel Hierarchy, When	
Constructors Are Called, Method Overriding, Dynamic Method Dispatch, Using	
Abstract Classes, Using final with Inheritance, The Object Class.	
Text book 1: Ch 6, Ch 7.1-7.9, Ch 8.	
Module – 4	-
Packages and Interfaces: Packages, Access Protection, Importing Packages,	8 Hours
Interfaces, Exception Handling: Exception-Handling Fundamentals, Exception	
Types, Uncaught Exceptions, Using try and catch, Multiple catch Clauses,	
Nested try Statements, throw, throws, finally, Java's Built-in Exceptions,	
Creating Your Own Exception Subclasses, Chained Exceptions, Using	
Exceptions.	
	1

Module – 5

Enumerations, Type Wrappers, I/O, Applets, and Other Topics: I/O Basics, **8 Hours** Reading Console Input, Writing Console Output, The PrintWriter Class, Reading and Writing Files, Applet Fundamentals, The transient and volatile Modifiers, Using instanceof, strictfp, Native Methods, Using assert, Static Import, Invoking Overloaded Constructors Through this(), String Handling: The String Constructors, String Length, Special String Operations, Character Extraction, String Comparison, Searching Strings, Modifying a String, Data Conversion Using valueOf(), Changing the Case of Characters Within a String, Additional String Methods, StringBuffer, StringBuilder.

Text book 1: Ch 12.1,12.2, Ch 13, Ch 15

Course outcomes: The students should be able to:

- Explain the object-oriented concepts and JAVA.
- Develop computer programs to solve real world problems in Java.
- Develop simple GUI interfaces for a computer program to interact with users

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Herbert Schildt, Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007. (Chapters 2, 3, 4, 5, 6,7, 8, 9,10, 12,13,15)

Reference Books:

- 1. Mahesh Bhave and Sunil Patekar, "Programming with Java", First Edition, Pearson Education, 2008, ISBN:9788131720806.
- 2. Rajkumar Buyya,S Thamarasi selvi, xingchen chu, Object oriented Programming with java, Tata McGraw Hill education private limited.
- 3. E Balagurusamy, Programming with Java A primer, Tata McGraw Hill companies.
- 4. Anita Seth and B L Juneja, JAVA One step Ahead, Oxford University Press, 2017.

ARTIFICIAL INTELLIGENCE [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – V

Subject Code	15CS562	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS - 03

Course objectives: This course will enable students to

- Identify the problems where AI is required and the different methods available
- Compare and contrast different AI techniques available.
- Define and explain learning algorithms

Define and englant featuring argentants	_
Module – 1	Teaching
	Hours
What is artificial intelligence?, Problems, Problem Spaces and search, Heuristic	8 Hours
search technique	
TextBook1: Ch 1, 2 and 3	
Module – 2	
Knowledge Representation Issues, Using Predicate Logic, Representing	8 Hours
knowledge using Rules,	
TextBoook1: Ch 4, 5 and 6.	
Module – 3	
Symbolic Reasoning under Uncertainty, Statistical reasoning, Weak Slot and	8 Hours
Filter Structures.	
TextBoook1: Ch 7, 8 and 9.	
Module – 4	
Strong slot-and-filler structures, Game Playing.	8 Hours
TextBoook1: Ch 10 and 12	
Module – 5	_
Natural Language Processing, Learning, Expert Systems.	8 Hours

TextBook1: Ch 15,17 and 20

Course outcomes: The students should be able to:

- Identify the AI based problems
- Apply techniques to solve the AI problems
- Define learning and explain various learning techniques
- Discuss on expert systems

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. E. Rich, K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.

Reference Books:

1. Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson Education 2nd Edition.

- 1. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems Prentice Hal of India.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem Solving", Fourth Edition, Pearson Education, 2002.
- 3. Artificial Intelligence and Expert Systems Development by D W Rolston-Mc Graw hill.
- 4. N.P. Padhy "Artificial Intelligence and Intelligent Systems", Oxford University Press-2015

[As per Choice I	•	stem (CBCS) scheme] c year 2016 -2017)		
Subject Code	15CS563	IA Marks	20)
Number of Lecture Hours/Week	3	Exam Marks	80)
Total Number of Lecture Hours	40	Exam Hours	03	3
	CREDITS -			
Course objectives: This course wil	l enable students	to		
 Provide a general overview of Show current statistics of Er Design, code, compile, and to Integrate a fully functional statistics 	nbedded System test real-time sof	s tware		
Module – 1				Teaching Hours
Introduction to embedded system into a system, Embedded hardware software in a system, Examples of embedded system, Formalization of examples, Classification of embedd system designer.	units and device of embedded sy system design, l	in a system, Embedded stems, Design process Design process and desi	in gn	8 Hours
Module – 2				1
Devices and communication buses Serial communication devices, Para features in device ports, Wireless Watchdog timer, Real time clock communication protocols, Parallel b internet using ISA, PCI, PCI-X and network protocols, Wireless and mo	llel device ports, devices, Timer, Networked em ous device protoc l advanced buses	Sophisticated interfacing and counting devices abedded systems, Seria cols-parallel communication, Internet enabled systems	ng s, al bus ation	8 Hours
Module – 3				T
Device drivers and interrupts a busy-wait approach without interrupt sources, Interrupt servicing (Handlin and the periods for context switch Classification of processors interrupt angle, Direct memory access, Device Module – 4	ot service mechang) Mechanism, hing, interrupt interrupt is service mechan	nism, ISR concept, Inter Multiple interrupts, Con latency and deadline, nism from Context-savin	rrupt ntext	8 Hours
Inter process communication and	synchronizatio	n of processes. Thread	s and	8 Hours
tasks: Multiple process in an applic Tasks, Task states, Task and Data, Cand tasks by their characteristics, coprocess communication, Signal functions, Mailbox functions, Pipe 1	ation, Multiple the Clear-cut distinct oncept and semapetion, Semaphore	nreads in an application ion between functions. shores, Shared data, Inte functions, Message Qu	, ISRS er- ieue	o modify
Module – 5				T = =
Real-time operating systems: OS functions, Event functions, Memo subsystems management, Interrupt to of interrupt source calls, Real-time of RTOS, RTOS task scheduling model.	ry management routines in RTOS operating system	Device, file and IO Senvironment and hand s, Basic design using ar	lling 1	8 Hours

as performance metrics, OS security issues. Introduction to embedded software development process and tools, Host and target machines, Linking and location software.

Course outcomes: The students should be able to:

- Distinguish the characteristics of embedded computer systems.
- Examine the various vulnerabilities of embedded computer systems.
- Design and develop modules using RTOS.
- Implement RPC, threads and tasks

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Raj Kamal, "Embedded Systems: Architecture, Program ming, and Design" 2 nd / 3rd edition, Tata McGraw hill-2013.

Reference Books:

1. Marilyn Wolf, "Computer as Components, Principles of Embedded Computing System Design" 3 rd edition, Elsevier-2014.

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT [As per Choice Based Credit System (CBCS) scheme (Effective from the academic year 2016 -2017) SEMESTER - V

Subject Code	15CS564	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS - 03

Course objectives: This course will enable students to

- Inspect Visual Studio programming environment and toolset designed to build applications for Microsoft Windows
- Understand Object Oriented Programming concepts in C# programming language.
- Interpret Interfaces and define custom interfaces for application.
- Build custom collections and generics in C#
- Construct events and query data using query expressions

Module – 1	Teaching
Wiodule 1	Hours
Introducing Microsoft Visual C# and Microsoft Visual Studio 2015:	8 Hours
<u>e</u>	
Welcome to C#, Working with variables, operators and expressions, Writing	
methods and applying scope, Using decision statements, Using compound	
assignment and iteration statements, Managing errors and exceptions	
T1: Chapter 1 – Chapter 6	
Module – 2	
Understanding the C# object model: Creating and Managing classes and	8 Hours
objects, Understanding values and references, Creating value types with	
enumerations and structures, Using arrays	
Textbook 1: Ch 7 to 10	
Module – 3	
Understanding parameter arrays, Working with inheritance, Creating interfaces	8 Hours
and defining abstract classes, Using garbage collection and resource management	
Textbook 1: Ch 11 to 14	
Module – 4	
Defining Extensible Types with C#: Implementing properties to access fields,	8 Hours
Using indexers, Introducing generics, Using collections	
Textbook 1: Ch 15 to 18	
Module – 5	
Enumerating Collections, Decoupling application logic and handling events, 8 Hou	
Querying in-memory data by using query expressions, Operator overloading	
Textbook 1: Ch 19 to 22	

Course outcomes: The students should be able to:

- Build applications on Visual Studio .NET platform by understanding the syntax and semantics of C#
- Demonstrate Object Oriented Programming concepts in C# programming language
- Design custom interfaces for applications and leverage the available built-in interfaces in building complex applications.
- Illustrate the use of generics and collections in C#
- Compose queries to query in-memory data and define own operator behaviour

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

 John Sharp, Microsoft Visual C# Step by Step, 8th Edition, PHI Learning Pvt. Ltd. 2016

Reference Books:

- 1. Christian Nagel, "C# 6 and .NET Core 1.0", 1st Edit ion, Wiley India Pvt Ltd, 2016. Andrew Stellman and Jennifer Greene, "Head First C#", 3rd Edition, O'Reilly Publications, 2013.
- 2. Mark Michaelis, "Essential C# 6.0", 5th Edition, Pe arson Education India, 2016.
- 3. Andrew Troelsen, "Prof C# 5.0 and the .NET 4.5 Fram ework", 6th Edition, Apress and Dreamtech Press, 2012.

CLOUD COMPUTING

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER - V

Subject Code	15CS565	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03

CREDITS - 03

Course objectives: This course will enable students to

- Explain the technology and principles involved in building a cloud environment.
- Contrast various programming models used in cloud computing
- Choose appropriate cloud model for a given application

Module – 1	Teaching
	Hours
Introduction ,Cloud Computing at a Glance, The Vision of Cloud Computing,	8 Hours
Defining a Cloud, A Closer Look, Cloud Computing Reference Model,	
Characteristics and Benefits, Challenges Ahead, Historical Developments,	
Distributed Systems, Virtualization, Web 2.0, Service-Oriented Computing,	
Utility-Oriented Computing, Building Cloud Computing Environments,	
Application Development, Infrastructure and System Development, Computing	
Platforms and Technologies, Amazon Web Services (AWS), Google	
AppEngine, Microsoft Azure, Hadoop, Force.com and Salesforce.com,	
Manjrasoft Aneka	
Virtualization, Introduction, Characteristics of Virtualized, Environments	
Taxonomy of Virtualization Techniques, Execution Virtualization, Other Types	
of Virtualization, Virtualization and Cloud Computing, Pros and Cons of	
Virtualization, Technology	

Module – 2

Cloud Computing Architecture, Introduction, Cloud Reference Model, **8 Hours**Architecture, Infrastructure / Hardware as a Service, Platform as a Service, Software as a Service, Types of Clouds, Public Clouds, Private Clouds, Hybrid Clouds, Community Clouds, Economics of the Cloud, Open Challenges, Cloud Definition, Cloud Interoperability and Standards Scalability and Fault Tolerance Security, Trust, and Organizational Aspects

Aneka: Cloud Application Platform, Framework Overview, Anatomy of the Aneka Container, From the Ground Up: Platform Abstraction Layer, Fabric Services, foundation Services, Application Services, Building Aneka Clouds, Infrastructure Organization, Logical Organization, Private Cloud Deployment Mode, Public Cloud Deployment Mode, Hybrid Cloud Deployment Mode, Cloud Programming and Management, Aneka SDK, Management Tools

Module - 3

Concurrent Computing: Thread Programming, Introducing Parallelism for Single
Machine Computation, Programming Applications with Threads, What is a
Thread?, Thread APIs, Techniques for Parallel Computation with Threads,
Multithreading with Aneka, Introducing the Thread Programming Model, Aneka
Thread vs. Common Threads, Programming Applications with Aneka Threads,
Aneka Threads Application Model, Domain Decomposition: Matrix
Multiplication, Functional Decomposition: Sine, Cosine, and Tangent.
High-Throughput Computing: Task Programming, Task Computing,

Characterizing a Task, Computing Categories, Frameworks for Task Computing,
Task-based Application Models, Embarrassingly Parallel Applications,
Parameter Sweep Applications, MPI Applications, Workflow Applications with
Task Dependencies, Aneka Task-Based Programming, Task Programming
Model, Developing Applications with the Task Model, Developing Parameter
Sweep Application, Managing Workflows.
Modulo 4

Module – 4

Data Intensive Computing: Map-Reduce Programming, What is Data-Intensive Computing?, Characterizing Data-Intensive Computations, Challenges Ahead, Historical Perspective, Technologies for Data-Intensive Computing, Storage Systems, Programming Platforms, Aneka MapReduce Programming, Introducing the MapReduce Programming Model, Example Application

8 Hours

Module – 5

Cloud Platforms in Industry, Amazon Web Services, Compute Services, Storage Services, Communication Services, Additional Services, Google AppEngine, Architecture and Core Concepts, Application Life-Cycle, Cost Model, Observations, Microsoft Azure, Azure Core Concepts, SQL Azure, Windows Azure Platform Appliance.

8 Hours

Cloud Applications Scientific Applications, Healthcare: ECG Analysis in the Cloud, , Social Networking, Media Applications, Multiplayer Online Gaming.

Course outcomes: The students should be able to:

- Explain the concepts and terminologies of cloud computing
- Demonstrate cloud frameworks and technologies
- Define data intensive computing
- Demonstrate cloud applications

Ouestion paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

1. Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi Cloud. Computing McGraw Hill Education

Mastering

Reference Books:

NIL