FILE STRUCTURES [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - VI Subject Code 15IS62 IA Marks 20 4 Number of Lecture Hours/Week Exam Marks 80 50 Total Number of Lecture Hours **Exam Hours** 03 CREDITS - 04 Course objectives: This course will enable students to Explain the fundamentals of file structures and their management. Measure the performance of different file structures • Organize different file structures in the memory. • Demonstrate hashing and indexing techniques.

Module – 1	Teaching			
	Hours			
Introduction: File Structures: The Heart of the file structure Design, A Short	10 Hours			
History of File Structure Design, A Conceptual Toolkit; Fundamental File				
Operations: Physical Files and Logical Files, Opening Files, Closing Files,				
Reading and Writing, Seeking, Special Characters, The Unix Directory Structure,				
Physical devices and Logical Files, File-related Header Files, UNIX file System				
Commands; Secondary Storage and System Software: Disks, Magnetic Tape,				
Disk versus Tape; CD-ROM: Introduction, Physical Organization, Strengths and				
Weaknesses; Storage as Hierarchy, A journey of a Byte, Buffer Management,				
Input /Output in UNIX.				
Fundamental File Structure Concepts, Managing Files of Records : Field				
and Record Organization, Using Classes to Manipulate Buffers, Using				
Inheritance for Record Buffer Classes, Managing Fixed Length, Fixed Field				
Buffers, An Object-Oriented Class for Record Files, Record Access, More about				
Record Structures, Encapsulating Record Operations in a Single Class, File				
Access and File Organization.				
Module – 2				
Organization of Files for Performance, Indexing: Data Compression,				
Reclaiming Space in files, Internal Sorting and Binary Searching, Keysorting;				
What is an Index? A Simple Index for Entry-Sequenced File, Using Template				
Classes in C++ for Object I/O, Object-Oriented support for Indexed, Entry-				
Sequenced Files of Data Objects, Indexes that are too large to hold in Memory,				
Indexing to provide access by Multiple keys, Retrieval Using Combinations of				
Secondary Keys, Improving the Secondary Index structure: Inverted Lists,				
Selective indexes, Binding.				
Module – 3				
Consequential Processing and the Sorting of Large Files: A Model for	10 Hours			
Implementing Cosequential Processes, Application of the Model to a General				
Ledger Program, Extension of the Model to include Mutiway Merging, A Second				
Look at Sorting in Memory, Merging as a Way of Sorting Large Files on Disk.				
Multi-Level Indexing and B-Trees: The invention of B-Tree, Statement of the				
problem, Indexing with Binary Search Trees; Multi-Level Indexing, B-Trees,				
Example of Creating a B-Tree, An Object-Oriented Representation of B-Trees,				
B-Tree Methods; Nomenclature, Formal Definition of B-Tree Properties, Worst-				
case Search Depth, Deletion, Merging and Redistribution, Redistribution during				

10 Hours
10 Hours

Course outcomes: The students should be able to:

resolution techniques, Patterns of record access.

• Choose appropriate file structure for storage representation.

Deletion, Extendible Hashing Performance, Alternative Approaches.

Extendible Hashing: How Extendible Hashing Works, Implementation,

- Identify a suitable sorting technique to arrange the data.
- Select suitable indexing and hashing techniques for better performance to a given problem.

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Michael J. Folk, Bill Zoellick, Greg Riccardi: File Structures-An Object Oriented Approach with C++, 3rd Edition, Pearson Education, 1998. (Chapters 1 to 12 excluding 1.4, 1.5, 5.5, 5.6, 8.6, 8.7, 8.8)

Reference Books:

- 1. K.R. Venugopal, K.G. Srinivas, P.M. Krishnaraj: File Structures Using C++, Tata McGraw-Hill, 2008.
- 2. Scot Robert Ladd: C++ Components and Algorithms, BPB Publications, 1993.
- 3. Raghu Ramakrishan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw Hill, 2003.